CHOCOLATE COMPOSITIONS CONTAINING ETHYCELLULOSE ARE HEAT RESISTANT. The ethylcellulose is introduced into the chocolate as a solution in oil or in a nonaqueous solvent, suitably in an amount from about 1 percent to about 3 percent ethylcellulose by weight. Ethylcellulose oleogels may also be used to replace a portion of the oils and fats normally present in chocolate and/or to formulate fillings for filled chocolates exhibiting reduced oil migration. Also provided are methods of making chocolate compositions according to the invention. PCT Application PCT/IB2010/001471, Publication No. WO/2010/143067 is assigned to Mars Inc. (McLean, VA) by Marongoni. Priority US 12 June 2009. Published 16 December 2010. Chocolate formulated in this way can retain its shape at higher temperatures—to temperatures above about 30°C or even above 40°C. The provision of such a heat-resistant chocolate that also achieves good mouthfeel and taste properties would greatly simplify the distribution and consumption of chocolate in hot countries.*

POLYMER GELATION OF OILS PROVIDES AN EDIBLE OLEOGEL that includes an oil, ethylcellulose and a surfactant which is prepared by combining ethylcellulose with an edible oil and a surfactant, and heating the mixture to a temperature above the glass transition temperature of the ethylcellulose. Once the ethylcellulose has fully dissolved and the solution is clear, it is allowed to cool and set as a gel. The resulting oleogel is homogeneous, elastic, substantially anhydrous and has a gelation temperature below 100°C. It can be used as a fat substitute in foods. Also provided are methods of making oleogel, and food compositions containing the oleogel. PCT Application IB2010/001471 Publication No. WO/2010/143066 is assigned to Mars Inc. (McLean, VA) by Marongoni. Priority US 11 June 2010. Published 16 December 2010. The term “oleogel” refers to a gel having a continuous oil phase with the ethylcellulose uniformly dispersed in the gel phase and functioning as the gelling agent. The oleogels are clear and translucent, generally transparent materials having the physical properties of a true gel as described above. The surfactant is likewise homogeneously distributed through the gel. Thus, the surfactant is not concentrated at the surface of oil or water micelles as in an emulsion. The oleogel may consist essentially of one or more oils or fats, the ethylcellulose and the surfactant. The oleogel is suitably anhydrous, that is to say, it suitably has a water content of less than about 10 percent w/w, for example less than about 5 percent w/w. The oleogel may be used in a wide variety of foods in addition to confections, such as processed meats and dairy foods.*

TEMPERATURE-RESISTANT CHOCOLATE COMPOSITION AND METHOD have been invented by Corina S. Curschellas, William Hanselmann, Steven James Hess and Erich J. Windhab. A chocolate composition and a method for manufacturing the chocolate composition include a solid material, e.g., a nutritive carbohydrate sweetener that has a particle size from about 50 to about 1,000 nanometers. The solid material may comprise a sugar, such as but not limited to sucrose. By including within the chocolate composition the solid material that has the particle size from about 50 to about 1,000 nanometers, the chocolate composition has enhanced temperature-resistance properties. Patent 20100323067 was published 23 December 2010, and assigned to Hershey Foods Corp.

*From Superior Intelligence published by Superior Industries.